skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deravi, Leila F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The photoexcited charge transfer properties of cephalopod chromatophore granules are examined within a photovoltaic cell. Photoconversion efficiency up to 0.81 ± 0.14% is recorded, highlighting a new function for these unique biomaterials. 
    more » « less
  2. Nature is full of exemplary species that have evolved personalized sensors and actuating systems that interface with and adapt to the world around them. Among them, cephalopods are unique. They employ fast-sensing systems that trigger structural changes to impart color changes through biochemical and optoelectronic controls. These changes occur using specialized optical organs that receive and respond to signals (light, temperature, fragrances, sound, and textures) in their environments. We describe features that enable these functions, highlight engineered systems that mimic them, and discuss strategies to consider for future cephalopod-inspired sensor technologies. 
    more » « less
  3. Crystallins comprise the protein-rich tissue of the eye lens. Of the three most common vertebrate subtypes, β-crystallins exhibit the widest degree of polydispersity due to their complex multimerization properties in situ. While polydispersity enables precise packing densities across the concentration gradient of the lens for vision, it is unclear why there is such a high degree of structural complexity within the β-crystallin subtype and what the role of this feature is in the lens. To investigate this, we first characterized β-crystallin polydispersity and then established a method to dynamically disrupt it in a process that is dependent on isoform composition and the presence of divalent cationic salts (CaCl 2 or MgCl 2 ). We used size-exclusion chromatography together with dynamic light scattering and mass spectrometry to show how high concentrations of divalent cations dissociate β-crystallin oligomers, reduce polydispersity, and shift the overall protein surface charge—properties that can be reversed when salts are removed. While the direct, physiological relevance of these divalent cations in the lens is still under investigation, our results support that specific isoforms of β-crystallin modulate polydispersity through multiple chemical equilibria and that this native state is disrupted by cation binding. This dynamic process may be essential to facilitating the molecular packing and optical function of the lens. 
    more » « less
  4. Efficiently manipulating and reproducing collagen (COL) alignment in vitro remains challenging because many of the fundamental mechanisms underlying and guiding the alignment process are not known. We reconcile experiments and coarse-grained molecular dynamics simulations to investigate the mechanical behaviors of a growing COL scaffold and assay how changes in fiber alignment and various cross-linking densities impact their alignment dynamics under shear flow. We find higher cross-link densities and alignment levels significantly enhance the apparent tensile/shear moduli and strength of a bulk COL system, suggesting potential measures to facilitate the design of stronger COL based materials. Since fibril alignment plays a key factor in scaffold mechanics, we next investigate the molecular mechanism behind fibril alignment with Couette flow by computationally investigating the effects of COL's structural properties such as chain lengths, number of chains, tethering conditions, and initial COL conformations on the COL's final alignment level. Our computations suggest that longer chain lengths, more chains, greater amounts of tethering, and initial anisotropic COL conformations benefit the final alignment, but the effect of chain lengths may be more dominant over other factors. These results provide important parameters for consideration in manufacturing COL-based scaffolds where alignment and cross-linking are necessary for regulating performance. 
    more » « less
  5. Synopsis Cephalopods, including squid, octopus, and cuttlefish, can rapidly camouflage in different underwater environments by employing multiple optical effects including light scattering, absorption, reflection, and refraction. They can do so with exquisite control and within a fraction of a second—two features that indicate distributed, intra-dermal sensory, and signaling components. However, the fundamental biochemical, electrical, and mechanical controls that regulate color and color change, from discrete elements to interconnected modules, are still not fully understood despite decades of research in this space. This perspective highlights key advancements in the biochemical analysis of cephalopod skin and discusses compositional connections between cephalopod ocular lenses and skin with features that may also facilitate signal transduction during camouflage. 
    more » « less